
Chapter 8 Recursion 

The subject of this chapter is recursion, an implicit application of the stack 

ADT. A recursive method is a method that carries out its task by making a 

call(s) to itself. Each recursive call of a (correctly implemented) recursive 

method reduces the problem size, i.e., recursion is a divide-and-conquer 

approach to problem solving. When the problem size becomes sufficiently 

small, the solutions of all the smaller subproblems are combined to arrive 

at a solution to the original problem. As we will see in this chapter and the 

next, recursion is a powerful problem-solving technique. 

8.1 Recursive Definitions 

The first step in solving a problem recursively is to formulate a recursive 

definition of the problem. 

 

recursive definition: a self-referential definition, i.e., a definition that de-

fines an expression in terms of itself 

 

As a first example, let us consider the case of raising a real number, x, to 

a nonnegative integer power, n. A standard definition for xn is shown be-

low. This definition makes it apparent that xn can be computed using the 

loop that follows the definition. 
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// Compute x^n using a loop. 
 
double result = 1; 
for (int j = 1; j <= n; j++) 
    result *= x; 

 

The recursive definition of x
n
 shown below is more concise but appears 

to offer little guidance to the programmer. 
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This definition does provide us with enough information to program a 

solution, however. Consider method power . 

 
// Compute x^n recursively. 
 
public class Recurse 
{ 
    /* 
     precondition: This method computes x^n, where n is assumed  
                   to be nonnegative. A call to thi s method with  
                   negative n  will cause the progr am to crash. 
    postcondition: x^n has been returned. 
    */ 
 
    public static double power(double x, int n) 
    { 
        if (n == 0)      // This is called the base  case. The 
            return 1.0;  // base case controls the depth of the  
                         // recursion, i.e., how ma ny recursive  
                         // calls are made. 
 
        return x * power(x, n - 1);  // This is jus t the recursive  
                                     // definition restated in 
    }                                // Java! 
} 

 

Method power  will in fact compute x
n
, but how it does so may be far 

from obvious. In order to understand power 's behavior we must look be-

neath the code above, for recursion turns on the use of a hidden stack, the 

run-time stack, for passing arguments. 

8.2 Method Arguments and the Run-Time Stack 

Available to any running program is a stack called the run-time stack. If 

the program in question takes the form of machine code, i.e., if the pro-

gram was written in a truly compiled language, then the run-time stack is 

part of the running program. Java is not a truly compiled language; a Java 

class file contains not machine code but byte code. Byte code is a language 

intermediate between Java and machine language. Java byte code cannot 

be executed directly by the CPU; byte code must be interpreted, i.e., exe-

cuted by a machine-language program. The machine-language program 

that executes Java byte code is called the Java Virtual Machine (JVM). 

The run-time stack available to a Java program resides within the JVM. 
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When a method is called, the method's arguments and its return address 

are pushed onto the run-time stack before execution of the method begins. 

A method's return address marks the location at which program execution 

should continue after the method has returned. The method's arguments, its 

return address, and any other pertinent data that have been pushed onto the 

run-time stack are collectively referred to as the method call's stack frame, 

or call frame, or activation record. An example appears in the code snippet 

and figure below. 

 
public class Function 
{ 
    public static double power(double x, int n) 
    { 
        double result = 1; 
        for (int j = 1; j <= n; j++) 
            result *= x; 
        return result; 
    } 
} 
. 
. 
. 
public class Application 
{ 
    /* 
    Method main() contains a call to the power() me thod defined  
    above. For the sake of this example, assume tha t the call's  
    return address is 1007. power() must return to address 1007 
    so that its return value can be assigned to 're sult'. 
    */ 
 
    public static void main(String[] args) 
    { 
        double result; 
1007    result = Function.power(2.0, 4); 
        System.out.println("2^4 = " + result); 
    } 
}  
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During its execution, method power  accesses its arguments by their 

addresses on the run-time stack. When the method's execution ends, its call 

frame is popped off of the run-time stack and program execution continues 

at address 1007. 

Observe that power 's call frame is stacked on top of main 's call frame. 

This stacking of call frames is what makes recursion possible. Let us see 

how by looking behind the scenes of a call to the recursive power  method 

of class Recurse . Consider the call shown below. 

 
double result = Recurse.power(2.0, 4); 

 

This initial, or outer, call to power  results in the construction of the call 

frame shown below. The call's return address has been omitted. 

 

 
 

Because 4 > 0, we have not yet reached the base case. Thus the outer 

call to power  does not return 1.0 but instead proceeds to the method's sec-

ond return statement, which makes a second call to power  with n = 3. The 

outer call cannot perform its multiplication or return its result until the 

second call returns its value, and so the call frame for the outer call re-

mains on the run-time stack and the call frame for the second call is built 

on top of the first, as shown below. 
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Because 3 > 0, the base case is still irrelevant. Consequently, the second 

call to power  makes a third call with n = 2. The second call cannot return 

its result until the third call returns. Thus the call frame for the third call is 

built on top of those from the first and second calls. 

 

 
 

We still have not arrived at the base case, and so yet another call frame 

with n = 1 is stacked upon the preceding frames. 
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The call to power  for which n = 1 now makes a call to power  with n = 

0. The call frame for power(2.0, 0)  is placed on top of the others but 

it does not stay there for long because n = 0 is the base case. Because 

power(2.0, 1)  is waiting for the return value from power(2.0, 
0) , the return address for the final call is the return statement within 

power(2.0, 1) . Hence the call frame for power(2.0, 0)  is 

popped from the run-time stack and the value 1.0 is returned to 

power(2.0, 1) . The run-time stack is again in the state shown in the 

last figure and power(2.0, 1)  has what it needs to perform its multi-

plication and returns its value, 2.0. 

Next, power(2.0, 1)  returns its value to power(2.0, 2) , after 

having popped its call frame off of the run-time stack. This leaves the run-

time stack in the state shown below and gives power(2.0, 2)  what it 

needs to perform its multiplication and return its value, 4.0. 
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This process of resurfacing continues until the outer call has received 

the value 8.0 from the second call. The outer call can then compute its re-

turn value, remove its call frame from the run-time stack, and return 16.0 

to the assignment statement that began the recursion. After the outer call 

has returned no remnants of the recursion remain on the run-time stack. 

 

The run-time stack, unlike an instance of our Stack  class, has a 

fixed size. If a recursive method makes too many recursive calls, the 

call frames will fill the run-time stack, causing a 

java.lang.StackOverflowError  to be thrown. Stack over-

flow may occur if a recursive method's precondition is not met, if a 

recursive method lacks an appropriate base case, or if recursion goes 

too deep to be supported by the run-time stack despite the presence 

of an appropriate base case. 
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8.3 More Examples 

Here we examine two more classic examples of recursive problem solving: 

the factorial function and the Fibonacci numbers. 

8.3.1 The Factorial Function 

The factorial function, which pervades mathematics, presents a nice oppor-

tunity for using recursion. Both recursive and non-recursive definitions of 

factorial appear below along with a recursive implementation. 

 





>⋅⋅⋅⋅−−

=

=

0 if ,123...)2)(1(

0 if ,1
!

nnnn

n
n  

 





>−

=

=

0 if ,)!1(

0 if ,1
!

nnn

n
n  

 
public class Recurse 
{ 
    /* 
     precondition: The factorial function is undefi ned for 
                   negative n. If a negative argume nt is passed 
                   to this method, then the method will cause  
                   stack overflow. 
    postcondition: The factorial of n has been retu rned. 
    */ 
 
    public static long factorial(int n) 
    { 
        if (n == 0) 
            return 1; 
        return n * factorial(n - 1); 
    } 
} 

8.3.2 The Fibonacci Sequence 

The nth Fibonacci number gives the number of pairs of rabbits n months 

after a single pair begins breeding, assuming that newborns begin breeding 

at two months of age1. The Fibonacci numbers also describe many other 

natural phenomena, and there is even a collection called the Fibonacci 

heap. The first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,.... 

                                                      
1 Eric W. Weisstein. "Fibonacci Number." From MathWorld--A Wolfram Web 

Resource. http://mathworld.wolfram.com/FibonacciNumber.html 
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The nth Fibonacci number is equal to the sum of its two predecessors. 

Thus the Fibonacci sequence is inherently recursive. 
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The implementation appears below. 
 
public class Recurse 
{ 
    /* 
     precondition: F(n) is defined only for positiv e n. 
    postcondition: The nth Fibonacci number has bee n returned. 
    */ 
 
    public static int Fibonacci(int n) 
    { 
        if (n == 1 || n == 2) 
            return 1; 
        return Fibonacci(n - 1) + Fibonacci(n - 2);  
    } 
} 

8.4 The Pros and Cons of Using Recursion 

Recursion and looping are the two kinds of programmatic iteration, or 

repetition. Is recursion more powerful than looping? In other words, are 

there algorithms that can be implemented with recursion but not with 

loops? Conversely, is looping more powerful than recursion? The answer 

to both questions is no, for it can be shown that looping and recursion are 

equivalent, i.e., any algorithm that can be implemented with a loop can 

also be implemented with recursion, and vice versa. What, then, are the 

advantages of recursion, and does it have any drawbacks? 

The primary advantage of recursion is that it often means less work for 

the programmer. Although loop implementations for power , facto-
rial , and Fibonacci  are not challenging to code, their recursive im-

plementations are somewhat shorter and, at least on the surface, easier to 

understand. And there are algorithms that are quite easy to implement re-

cursively but much more challenging to implement using loops. Traversing 

a binary tree is an example of such an algorithm, as we will see in      

Chapter 13. 
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Recursion also has drawbacks. Building and removing call frames is 

time consuming relative to the record keeping required by loops, and so a 

recursive method tends to execute slower than an equivalent looping 

method. Both the looping and the recursive implementations of facto-
rial , for example, have linear running times, but the loop implementa-

tion is faster by a constant factor. 

There is also the matter of stack overflow. The loop implementation of 

Fibonacci  obviously cannot overflow the run-time stack, but the recur-

sive version will overflow the stack for a disappointingly small value of n. 
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Exercises 

1. Add the recursive methods specified below to class Recurse . 

 
 precondition: n >= 0 
postcondition: The method has printed "Go Lions" n times, followed  
               by "Yay Team," followed by "Go Lions " n times. 
 
cheer(PrintStream out, int n); 
 
example: 
 
cheer(System.out, 2); 
 
Go Lions 
Go Lions 
Yay Team 
Go Lions 
Go Lions 
 
 precondition: ch is in the range '0' through '9'. 
postcondition: The method has printed a pattern of digits to the  
               stream as follows: 
 
               1. If ch is '0', the output is '0'. 
               2. For other values of ch, the outpu t consists of 
                  a. the previous digit character, (ch - 1) 
                  b. ch itself 
                  c. the previous digit character 
 
               There is no newline printed at the e nd of the 
               output. 
 
digits(PrintStream out, char ch); 
 
example: 
 
digits(System.out, '1'); 
 
010 
 
digits(System.out, '3'); 
 
010201030102010 
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 precondition: m <= n 
postcondition: The function has printed 2 * (n - m + 1) lines of  
               output to the stream. The first line  contains n 
               asterisks, the next line contains n - 1 asterisks,  
               and so on down to m asterisks. Then the pattern is  
               repeated backwards, from m up to n. 
 
triangle(PrintStream out, int m, int n); 
 
example: 
 
triangle(System.out, 2, 4); 
 
**** 
*** 
** 
** 
*** 
**** 
 
 precondition: N/A 
postcondition: The function has returned x^n. 
 
double power(double x, int n); 
 
example: 
 
double result = power(2.0, 8);  // result is 256.0 
 
result = power(2.0, -4);        // result is 1 / 16  = 0.0625 
 
 precondition: 'size' is equal to the length of str ing 'str'. 
postcondition: The characters of 'str' have been pr inted to the  
               stream in reverse order. 
 
revString(PrintStream out, String str, int size); 
 
example: 
 
revString(System.out, "Spiderman", 9); 
 
namredipS  

 

2. Implement the binary search algorithm using recursion. 

3. Draw binary trees to show the recursive calls that result from calling 

method Fibonacci  with n = 3, 5, 6, and 7. Conclude that the number 

of method calls is in O(2
n
). 

4. On your system, what value of n causes method Fibonacci  to over-

flow the run-time stack? 

5. Is it possible to set the JVM stack size? If so, how is it done? 


